RSM versus ANN for modeling and optimization of magnetic adsorbent based on montmorillonite and CoFe2O4.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      A highly resourceful, environmentally benign, and recyclable magnetic montmorillonite composite (MMT/CF) was obtained through a simple one-step hydrothermal method and exhibited excellent Pb (II) removal. The as-synthesized adsorbent was then characterized by XRD, SEM–EDX, FTIR, BET, and TGA-DTA. The operating parameters including adsorbent dosage, initial Pb (II) concentration, solution pH, and time were studied. Also, a comparative approach was formed between response surface methodology (RSM) and artificial neural network (ANN) to optimize and model the removal efficiency of Pb (II) by MMT/CF. The results indicated that the ANN model was more precise and quite trusted optimization tool than RSM in consideration of its higher correlation coefficient (R2 = 0.998) and lower prediction errors (RMSE = 0.851 and ADD = 0.505). Langmuir isotherm provided the best fit to the experimental data, and the maximum adsorption capacity was 101.01 mg/g. Additionally, the kinetic studies showed that the pseudo-second-order model fitted well with the experimental data. The magnetic MMT/CF composite possesses high adsorption capacity and is suitable for reuse. Therefore, this study shows that MMT/CF composite can be a potential adsorbent in Pb (II) uptake from aqueous media. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Applied Water Science is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)