Chemical toolbox to interrogate Heparanase-1 activity.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      The development of a robust chemical toolbox to interrogate the activity of heparanase-1 (HPSE-1), an endo-β- d -glucuronidase and the only known enzyme that cleaves heparan sulfate (HS), has become critically important. The primary function of HPSE-1, cleaving HS side chains from heparan sulfate proteoglycans (HSPGs), regulates the integrity of the extracellular matrix (ECM) and the bioavailability of active, heparan sulfate-binding partners such as enzymes, growth factors, chemokines, and cytokines. HPSE-1 enzymatic activity is strictly regulated and has been found to play fundamental roles in pathophysiological processes. HPSE-1 is significantly overexpressed under various conditions including cancer, metastasis, angiogenesis, and inflammation, making HPSE-1 a promising therapeutic and diagnostic target. Chemical tools that can detect and image HPSE-1 activity in vitro and/or in vivo can help drive the discovery of novel and efficacious anti-HPSE-1 drugs, investigate the basic biology of HPSE-1, and help serve as a diagnostic tool in clinical applications. Here, we will give an overview of the common chemical tools to detect HPSE-1 activity and highlight the novel heparanase probes recently developed in our lab. [Display omitted] [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Current Opinion in Chemical Biology is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)