Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Atmospheric black carbon observations and its valley-mountain dynamics: Eastern cordillera of the central Andes of Peru.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Villalobos-Puma, Elver1 (AUTHOR) ; Suarez, Luis2 (AUTHOR); Gillardoni, Stefania3 (AUTHOR); Zubieta, Ricardo2 (AUTHOR); Martinez-Castro, Daniel2 (AUTHOR); Miranda-Corzo, Andrea1 (AUTHOR); Bonasoni, Paolo3 (AUTHOR); Silva, Yamina2 (AUTHOR)
- Source:
Environmental Pollution. Aug2024, Vol. 355, pN.PAG-N.PAG. 1p.
- Subject Terms:
- Additional Information
- Subject Terms:
- Abstract:
Glacial bodies in the Peruvian Andes Mountains store and supply freshwater to hundreds of thousands of people in central Peru. Atmospheric black carbon (BC) is known to accelerate melting of snow and ice, in addition to contributing to air pollution and the health of people. Currently there is limited understanding on the sources and temporal variability of BC in valley and mountain environments in Peru. To address this problem, this study combined surface observations of BC collected during 2022–2023 with WRF model simulations and HYSPLIT trajectories to analyze the dispersion and sources of BC in valley and high elevation environments and the associated local atmospheric circulations. Results show high BC concentrations are associated with the valley-mountain wind system that occurs on both sides of the Huaytapallana mountain range. A pronounced circulation occurs on the western slopes of Huaytapallana when concentrations of BC increase during daylight hours, which transports atmospheric pollutants from cities in the Mantaro River Valley to the Huaytapallana mountain range. Low concentrations of BC are associated with circulations from the east that are channeled by the pronounced ravines of the Andes-Amazon transition. On average, during the season of highest BC concentrations (July–November), the relative contributions of fossil fuels are dominant to biomass burning at the valley observatory and are slightly lower at the Huaytapallana observatory. These results demonstrate the need to promote mitigation actions to reduce emissions of BC and air pollution associated with forest fires and local anthropogenic activity. [Display omitted] [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Environmental Pollution is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.