Mechanical ventilation during extracorporeal membrane oxygenation support – New trends and continuing challenges.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Background: The impact of mechanical ventilation on the survival of patients supported with veno-venous extracorporeal membrane oxygenation (V-V ECMO) due to severe acute respiratory distress syndrome (ARDS) remains still a focus of research Methods: Recent guidelines, randomized trials, and registry data underscore the importance of lung-protective ventilation during respiratory and cardiac support on ECMO. Results: This approach includes decreasing mechanical power delivery by reducing tidal volume and driving pressure as much as possible, using low or very low respiratory rate, and a personalized approach to positive-end expiratory pressure (PEEP) setting. Notably, the use of ECMO in awake and spontaneously breathing patients is increasing, especially as a bridging strategy to lung transplantation. During respiratory support in V-V ECMO, native lung function is of highest importance and adjustments of blood flow on ECMO, or ventilator settings significantly impact the gas exchange. These interactions are more complex in veno-arterial (V-A) ECMO configuration and cardiac support. The fraction on delivered oxygen in the sweep gas and sweep gas flow rate, blood flow per minute, and oxygenator efficiency have an impact on gas exchange on device side. On the patient side, native cardiac output, native lung function, carbon dioxide production (VCO2), and oxygen consumption (VO2) play a role. Avoiding pulmonary oedema includes left ventricle (LV) distension monitoring and prevention, pulse pressure >10 mm Hg and aortic valve opening assessment, higher PEEP adjustment, use of vasodilators, ECMO flow adjustment according to the ejection fraction, moderate use of inotropes, diuretics, or venting strategies as indicated and according to local expertise and resources Conclusion: Understanding the physiological principles of gas exchange during cardiac support on femoro-femoral V-A ECMO configuration and the interactions with native gas exchange and haemodynamics are essential for the safe applications of these techniques in clinical practice. Proning during ECMO remains to be discussed until further data is available from prospective, randomized trials implementing individualized PEEP titration during proning. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Perfusion is the property of Sage Publications, Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)