Analisis Performa Logistic Regression dan Support Vector Classification untuk Klasifikasi Email Phising. (Indonesian)

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Tangkere, Brury Barth
  • Source:
    Jurnal Ekonomi Manajemen Sistem Informasi (JEMSI); mar2024, Vol. 5 Issue 4, p442-450, 9p
  • Additional Information
    • Abstract:
      Cyber security is something that is very important to pay attention to, especially with the rapid development of information and communication technology now. With the increasing development of the information and communications sector and easy access to information, it is important to be able to safeguard personal data so that it is not misused by irresponsible parties. Therefore, in this research, we will carry out a phishing email classification process to find out whether the email received is a safe email or not. In this research, a total of 18,650 data will be used, consisting of 11,322 secure email data and 7,328 phishing email data. To carry out the classification process, this research will use the Logistic Regression algorithm and Support Vector Machine. The purpose of using these two algorithms is to find which algorithm can carry out the phishing email classification process well. After carrying out classification testing, the results were that the classification process using Logistic Regression got an accuracy of 96.5% and classification with Support Vector Classification got an accuracy of 97.4%. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Keamanan siber merupakan suatu hal yang sangat penting diperhatikan terutama dengan maraknya perkembangan teknologi informasi dan komunikasi sekarang. Dengan semakin berkembangnya sektor informasi dan komunikasi serta mudahnya akses informasi, maka penting untuk dapat menjaga data pribadi sehingga tidak disalahgunakan oleh pihak tidak bertanggung jawab. Oleh karena itu, pada penelitian ini, akan melakukan proses klasifikasi email phising untuk mengetahui bahwa email yang diterima merupakan email yang aman atau tidak. Pada penelitian ini, akan menggunakan data dengan total sebanyak 18650 data yang dimana terdiri dari 11322 data email aman dan 7328 data email phising. Untuk melakukan proses klasifikasi, pada penelitian ini akan menggunakan algoritma Logistic Regression dan Support Vector Machine. Tujuan digunakannya kedua algoritma ini yaitu untuk menemukan mana algoritma yang dapat melakukan proses klasfikasi email phising dengan baik. Setelah dilakukannya pengujian klasifikasi, mendapatkan hasil bahwa proses klasifikasi dengan Logistic Regression mendapatkan akurasi sebesar 96.5% dan klasfikasi dengan Support Vector Classification mendapatkan akurasi sebesar 97.4%. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Jurnal Ekonomi Manajemen Sistem Informasi (JEMSI) is the property of Dinasti Publisher and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)