New mutation within a common haplotype is associated with calf muscle weakness in Holsteins.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      A recessive haplotype resulting in elevated calf mortality but with apparent incomplete penetrance was previously linked to the end of chromosome 16 (78.7–80.7 Mbp). Genotype analysis of 5.6 million Holsteins indicated that the haplotype was common and traced back to 1952, with a key ancestor born in 1984 (HOUSA1964484, Southwind) identified from chip genotypes as homozygous for the suspect haplotype. Sequence data from Southwind (an affected calf) and the sire of the affected calf were scanned for candidate mutations. A missense mutation with a deleterious projected impact at 79,613,592 bp was homozygous in the affected calf and heterozygous in the calf's sire and Southwind. Sequence data available from the Cooperative Dairy DNA Repository for 299 other Holsteins indicated a 97% concordance with the haplotype and an 89% call rate. The exon amino acid sequence appears to be broadly conserved in the CACNA1S gene, and mutations in humans and mice can cause phenotypes of temporary or permanent paralysis analogous to those in calves with the haplotype causing muscle weakness (HMW). Improved methods for using pedigree to track new mutations within existing haplotypes were developed and applied to the haplotypes for both muscle weakness and Holstein cholesterol deficiency (HCD). For HCD, concordance of the gene test with its haplotype status was greatly improved. For both defects, haplotype status was matched to heifer livability records for 558,000 calves. For HMW, only 46 heifers with livability records were homozygous and traced only to Southwind on both sides. Of those, 52% died before 18 mo at an average age of 1.7 ± 1.6 mo, but that death rate may be underestimated if only healthier calves were genotyped. The death rate was 2.4% for noncarriers. Different reporting methods or dominance effects may be needed to include HMW and other partially lethal effects in selection and mating. Direct tests are needed for new mutations within existing common haplotypes because tracking can be difficult even with accurate pedigrees when the original haplotype has a high frequency. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Dairy Science is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)