Assessing the suitability of desalination techniques for hydraulic barriers.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Seawater intrusion is a worldwide increasing challenge, which lowers the freshwater availability by salination of fresh groundwater resources in coastal areas. The abstraction-desalination-recharge (ADR) methodology can combat seawater intrusion, whereby desalination is hereby the key factor for the overall efficiency of aquifer remediation. Which desalination technique is suitable within ADR depends on several factors and was not discussed before. We use a multi-criteria decision analysis and cost analysis to compare nanofiltration, reverse osmosis, electrodialysis, and (membrane) capacitive deionization and show for three case scenarios which desalination technique is most suitable within ADR. Overall, electrodialysis, nanofiltration, and reverse osmosis have shown the best utility value for saline groundwater salinity of 1–10 g L−1, whereby electrodialysis is more suitable for lower salinities. The lowest desalination costs are calculated for nanofiltration and reverse osmosis with 0.3–0.6 € m−3 depending on specific energy costs. Even capacitive deionisation can be a suitable alternative for low, slightly saline groundwater (1 g L−1) if the technology readiness level and a lifetime of electrodes increase and material costs decrease. These new insights provide a data analysis, costs, and decision support for desalination which are needed for the holistic approach to counteract seawater intrusion. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of NPJ Clean Water is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)