Markov chain composite likelihood and its application in genetic recombination model.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Phylogenetic Trees are critical in human genome research for investigating human evolution and identifying disease-associated genetic markers. New high-throughput genome sequencing technologies raise an urgent need to develop statistical methods that can construct phylogenetic trees from long genome sequences with quick computation speeds, while considering various biological complexities. Though an ancestral mixture model has been proposed [Chen SC, Lindsay BG. Building mixture trees from binary sequence data. Biometrika. 2006;93(4):843–860. doi: 10.1093/biomet/93.4.843] to this end by allowing genetic mutations over generations, another essential evolution factor, genetic recombination, is missed. Therefore, in this paper, we develop a novel genetic recombination model for tree construction and propose to use Markov chain composite likelihood (MCCL) to make model estimation computationally feasible. To further reduce computation complexity, a hierarchical estimator is constructed to estimate unknown ancestral distributions through MCCL. Simulation studies and real data example show that our proposed methods perform well and fast, so have the potential for implementation in long sequence genome data. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Statistical Computation & Simulation is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)