Geographic drivers more important than landscape composition in predicting bee beta diversity and community structure.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      The importance of microhabitat traits such as floral availability is well known; however, forest bee spatial dynamics have been variably studied across local to broad geographic scales. Past literature suggests that landscape factors from proximate to distal are important in determining forest bee community metrics, including richness, abundance, and taxonomic composition. Leveraging the interest and assistance of citizen science volunteers, we employed standard bee bowl trap transects across Maryland, Delaware, northern Virginia, and the District of Columbia and identified correlations between bee community composition, local and regional land cover, and broader geospatial patterns. We also identified the partial contributions of both specific species and sampling sites to total beta diversity. Various land cover metrics were significantly related to bee community structure, with bee abundance positively and negatively correlated with forest and wetland cover, respectively. In general, land cover metrics within 1000‐m buffer exhibited stronger correlations with bee communities; however, broader geographic variation, using Cartesian coordinates north and east as indices, was most significantly correlated with the bee community. Specifically, bee communities were less rich in the east and south of the study area. We also identified similar correlations with the bee community as categorized by both trophic and nesting behaviors, with both geographic northing and easting proving to be most strongly correlated with the forest bee community. Results of beta diversity and cluster analyses showed that the most species‐depauperate sites exhibited the highest contributions to beta diversity and that species‐poor sites consisted of a reduced subset of the greater community. Our results show that successful bee conservation must consider, beyond local‐scale resource availability, broad geospatial considerations and forest habitat connectivity across political and administrative boundaries. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Ecosphere is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)