Compound winter low wind and cold events impacting the French electricity system: observed evolution and role of large-scale circulation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      To reach climate mitigation goals, the share of wind power in the electricity production is going to increase substantially in France. In winter, low wind days are challenging for the electricity system if compounded with cold days that are associated with peak electricity demand. The scope of this study is to characterize the evolution of compound low wind and cold events in winter over the 1950–2022 period in France. Compound events are identified at the daily scale using a bottom-up approach based on two indices that are relevant to the French energy sector, derived from temperature and wind observations. The frequency of compound events shows high interannual variability, with some winters having no event and others having up to 13, and a decrease over the 1950–2022 period. Based on a k-means unsupervised classification technique, four weather types are identified, highlighting the diversity of synoptic situations leading to the occurrence of compound events. The weather type associated with the highest frequency of compound events presents pronounced positive sea-level pressure anomalies over Iceland and negative anomalies west of Portugal, limiting the entrance of the westerlies and inducing a north-easterly flow bringing cold air over France and Europe generally. We further show that the atmospheric circulation and its internal variability are likely to play a role in the observed reduction in cold days, suggesting that this negative trend may not be entirely be driven by anthropogenic forcings. Despite this suggested role for cold days, the observed decrease in compound events does not seem to be strongly influenced by the regional atmospheric circulation. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of EGUsphere is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)