The performance of partially substituted composite ester materials with weathered red-bed soil in ecological restoration.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Ester materials have become a significant topic in ecological restoration because of their degradability and lack of pollution. However, these artificial materials have issues such as high resource consumption and high cost. Therefore, finding a scientific substitute for ester materials is crucial to reduce costs. This study proposes the use of weathered red-bed soil to partially replace ester materials. Orthogonal coupled compounding and ecological effect tests were performed to analyze the soil improvement mechanism based on the mineral composition, soil structure, and electrical conductivity properties of the weathered red-bed soil. The experimental findings indicated that the soil modified using ester materials exhibited improved strength, water retention, and aeration owing to changes in the soil structure. Plant germination and height increased by 55% and 37 mm, respectively, when using a ratio of 15 g/m2 absorbent ester material, 2.5 g/m2 adhesive ester material, and 5% weathered red-bed soil. Through this approach, the amount of ester material to be used could be further reduced by 75%. The weathered red-bed soil offers improved ecological effects by altering the physical, mechanical, and hydraulic properties of the soil structure. This study presents a theoretical foundation for ecological conservation using weathered red-bed soil as a substitute for certain ester materials. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)