A Mott-Schottky analysis of mesoporous silicon in aqueous electrolyte solution by electrochemical impedance spectroscopy.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Nanoporosity in silicon leads to completely new functionalities of this mainstream semiconductor. In recent years, it has been shown that filling the pores with aqueous electrolytes, in addition opens a particularly wide field for modifying and achieving active control of these functionalities, e.g., for electrochemo-mechanical actuation and tunable photonics, or for the design of on-chip supercapacitors. However, a mechanistic understanding of these new features has been hampered by the lack of a detailed characterization of the electrochemical behavior of mesoporous silicon in aqueous electrolytes. Here, the capacitive, potential-controlled charging of the electrical double layer in a mesoporous silicon electrode (pore diameter 7 nm) imbibed with perchloric acid solution is studied by electrochemical impedance spectroscopy. Thorough measurements with detailed explanations of the observed phenomena lead to a comprehensive understanding of the capacitive properties of porous silicon. An analysis based on the Mott-Schottky equation enables the determination of essential parameters such as the flatband potential, the carrier concentration and the width of the space charge region. A comparison with bulk silicon shows that the flatband potential in particular is significantly altered by the introduction of nanopores, as it shifts from 1. 4 ± 0. 1 V to 1. 9 ± 0. 2 V. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Electrochimica Acta is the property of Pergamon Press - An Imprint of Elsevier Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)