Preventive effect of Cleome spinosa against cucumber Fusarium wilt and improvement on cucumber growth and physiology.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Cucumber wilt is an important soil borne disease in cucumber production, which seriously affects the development of the cucumber industry. Cleome spinosa also has pharmacological effects such as antibacterial, analgesic, anti-inflammatory, and insect repellent. To study the control effect and mechanism of Cleome spinosa fumigation on cucumber wilt disease, different concentrations of Cleome spinosa fragments were applied on cucumber plants infected with Fusarium oxysporum. Cleome spinosa fumigation significantly reduced the incidence rate of cucumber Fusarium wilt. Under the fumigation treatment of 7.5 g kg−1Cleome spinosa fragments, the preventive effects were 74.7%. Cleome spinosa fragments fumigation can promote cucumber growth and synthesis of photosynthetic pigments, thereby improving individual plant yield and fruit quality. At 7.5 g kg−1Cleome spinosa fragments fumigation treatment, the plant height and individual plant yield of cucumber increased by 20.3% and 34.3%, respectively. Cleome spinosa fumigation can enhance the activity of antioxidant enzymes in cucumber, maintain a balance of reactive oxygen species metabolism, and enhance the plant disease resistance. Moreover, Cleome spinosa can also regulate the activities of Mg2+-ATPase and Ca2+-ATPase, enhancing its resistance to Fusarium oxysporum. Moreover, number of bacteria and fungi significantly decreased under Cleome spinosa fumigation. Those results suggested that Cleome spinosa could effectively restrain cucumber Fusarium wilt. This study will provide a new idea for the further use of biological fumigation to prevent soil-borne diseases. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of 3 Biotech is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)