Rooted in Nature: The Rise, Challenges, and Potential of Organic Farming and Fertilizers in Agroecosystems.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Organic farming, which is deeply rooted in traditional agricultural practices, has witnessed a profound evolution over the last century. Transitioning from a grassroots initiative resisting the industrialization of agriculture to a global industry, organic farming now plays a pivotal role in addressing contemporary challenges related to environmental health, sustainability, and food safety. Despite the growing consumer demand for organic products and market access, organic farming has its challenges. This paper discusses the origin and evolution of organic farming with an emphasis on different types of organic fertilizers, benefits, and challenges. Nutrient variability and the slow-release nature of organic fertilizer often do not meet crop demands and can substantially reduce yield. Some organic fertilizers, like manure and biosolids, can provide a higher yield benefit, but there are environmental and health risks associated with them. Weed and pest management in organic farming can be labor-intensive and increase costs. Inefficient planning of organic farming and rapid transition can also create food insecurity. This paper also gives a brief account of the current certification process for organic fertilizers and their technicalities. It showcases how the holistic approach of organic farming extends beyond production, including strategies like reducing food waste and building self-sufficient farming communities. These practices contribute to a more sustainable agricultural system, reducing environmental impacts and supporting local economies. Future technological innovations, especially in precision agriculture and bio-physicochemical models, can help in formulating targeted organic fertilizers. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Sustainability (2071-1050) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)