Changes in evapotranspiration, transpiration and evaporation across natural and managed landscapes in the Amazon, Cerrado and Pantanal biomes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      • We partitioned ET from natural and managed tropical ecosystems using two models. • Managed sites had lower ET and T compared to natural ecosystems in all biomes. • ET and T significantly decrease during the dry season, except in Amazon forests. • T/ET was strongly correlated with LAI and EVI. Land-use and land-cover change (LULCC) can dramatically affect the magnitude, seasonality and main drivers of evaporation (E) and transpiration (T), together as evapotranspiration (ET), with effects on overall ecosystem function, as well as both the hydrological cycle and climate system at multiple scales. Our understanding of tropical ecosystem responses to LULCC and global change processes is still limited, mainly due to a lack of ground-based observations that cover a variety of ecosystems, land-uses and land-covers. In this study, we used a network of nine eddy covariance flux towers installed in natural (forest, savanna, wetland) and managed systems (rainfed and irrigated cropland, pastureland) to explore how LULCC affects ET and its components in the Amazon, Cerrado and Pantanal biomes. At each site, tower-based ET measurements were partitioned into T and E to investigate how these fluxes varied between different land-uses and seasons. We found that ET, T and E decreased significantly during the dry season, except in Amazon forest ecosystems where T rates were maintained throughout the year. In contrast to Amazon forests, Cerrado and Pantanal ecosystems showed stronger stomatal control during the dry season. Cropland and pasture sites had lower ET and T compared to native vegetation in all biomes, but E was greater in Pantanal pasture when compared to Pantanal forest. The T fraction of ET was correlated with LAI and EVI, but relationships were weaker in Amazon forests. Our results highlight the importance of understanding the effects of LULCC on water fluxes in tropical ecosystems, and the implications for climate change mitigation policies and land management. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Agricultural & Forest Meteorology is the property of Elsevier B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)