Seasonal and intraseasonal modulation of near-inertial wind power associated with fluctuations in unidirectional wind speed in the Bay of Bengal.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      This study examines the seasonal and intraseasonal modulation of near-inertial wind power associated with fluctuations in unidirectional wind speed in the Bay of Bengal (BoB). For that purpose, we use concurrent measurements of high-resolution in situ near-surface current and wind speed from six moorings in the BoB. It is found that the annual mean of near-inertial wind power in the BoB shows roughly similar magnitude (0.25–0.35 mW m−2) at all the mooring locations. However, in response to the seasonal evolution of monsoonal wind forcing, near-inertial wind power shows significant annual variability, with a maximum during summer (~ 0.4–0.5 mW m−2) and fall (~ 0.3–0.4 mW m−2) and a minimum during winter (~ 0.1 mW m−2) and spring (~ 0.2 mW m−2). In addition, it is also found that modulation of near-inertial wind power due to summer monsoon intraseasonal oscillation (MISO), such as its magnitude, reaches as large as ~ 1 mW m−2 at the mooring in the northern BoB during phases 3–4 of MISO. Using a high vertical resolution of current profile data, the near-inertial kinetic energy (NIKE) budget in the mixed layer in the northern BoB shows good temporal correspondence with the magnitude of the rate of change of NIKE and near-inertial wind power, with a maximum magnitude of the rate of change of NIKE lags the wind power by 24 hr. The NIKE budget also indicates that a significant portion of near-inertial wind power dissipates in the mixed layer and rarely energises the depth regime underneath the mixed layer. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Ocean Dynamics is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)