Lapse rate-adjusted bias correction for CMIP6 GCM precipitation data: An application to the Monsoon Asia Region.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Bias correction (BC) of General Circulation Models (GCMs) variables is a common practice when it is being used for climate impact assessment studies at regional scales. The present study proposes a bias correction method (LR-Reg) that first adjusts the original GCM precipitation for local lapse rate corrections and later bias corrects the lapse rate-adjusted GCMs precipitation data with linear regression coefficients. We evaluated LR-Reg BC method in comparison to Linear Scaling (LS) and Quantile Mapping (QMap) BC methods, and NASA's downscaled NEX data for Monsoon Asia region. This study used Coupled Model Intercomparison Project Phase 6 (CMIP6)-based MIROC6 GCM precipitation with historical and projected shared socio-economic pathways (SSP) scenarios (SSP245 and SSP585) datasets. The BC comparison results show that the relative percentage reduction in mean absolute error (MAE) values of LR-Reg over LS-BC was up to 10–30% while this relative reduction in MAE values of LR-Reg was 30–50% over QMap-BC and 75–100% over NASA's NEX-data. The future projected precipitation over Monsoon Asia during dry season shows more decreased precipitation by up to 100% mostly in the south Asia while during wet season shows more increased precipitation by up to 50% mostly in the northeastern China and in the Himalayan belts with respect to the baseline condition (1970–2005). The results on the average precipitation per 0.25 degree increase in latitude analysis shows that the maximums of average monsoon precipitation during baseline period occur at 0 and 25 degree latitudes while the projected monsoon precipitation during both SSP scenarios occurs at 10 and 20 degree latitudes which clearly shows an inward shift in the latitude axis for the projected precipitation in the Monsoon Asia. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Environmental Monitoring & Assessment is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)