Visualisation of experimentally determined and predicted protein N-glycosylation and predicted glycosylphosphatidylinositol anchor addition in Trypanosoma brucei.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Background: Trypanosoma brucei is a protozoan parasite and the etiological agent of human and animal African trypanosomiasis. The organism cycles between its mammalian host and tsetse vector. The host-dwelling bloodstream form of the parasite is covered with a monolayer of variant surface glycoprotein (VSG) that enables it to escape both the innate and adaptive immune systems. Within this coat reside lower-abundance surface glycoproteins that function as receptors and/or nutrient transporters. The glycosylation of the Trypanosoma brucei surface proteome is essential to evade the immune response and is mediated by three oligosaccharyltransferase genes; two of which, TbSTT3A and TbSTT3B, are expressed in the bloodstream form of the parasite. Methods: We processed a recent dataset of our laboratory to visualise putative glycosylation sites of the Trypanosoma brucei proteome. We provided a visualisation for the predictions of glycosylation carried by TbSTT3A and TbSTT3B, and we augmented the visualisation with predictions for Glycosylphosphatidylinositol anchoring sites, domains and topology of the Trypanosoma brucei proteome. Conclusions: We created a web service to explore the glycosylation sites of the Trypanosoma brucei oligosaccharyltransferases substrates, using data described in a recent publication of our laboratory. We also made a machine learning algorithm available as a web service, described in our recent publication, to distinguish between TbSTT3A and TbSTT3B substrates. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Wellcome Open Research is the property of Wellcome Trust and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)