An intercomparison of satellite, airborne, and ground-level observations with WRF-CAMx simulations of NO2 columns over Houston, TX during the September 2021 TRACER-AQ campaign.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Subject Terms:
    • Abstract:
      Nitrogen dioxide (NO2) is a precursor of ozone (O3) and fine particulate matter (PM2.5) – two pollutants that are above regulatory guidelines in many cities. Bringing urban areas into compliance of these regulatory standards motivates an understanding of the distribution and sources of NO2 through observations and simulations. The TRACER-AQ campaign, conducted in Houston, TX in September 2021, provided a unique opportunity to compare observed NO2 columns from ground-, airborne-, and satellite-based spectrometers. In this study, we investigate how these observational datasets compare, and simulate column NO2 using WRF-CAMx with fine resolution (444 x 444 m2) comparable to the airborne column measurements. We find that observations from the GEOCAPE Airborne Simulator (GCAS) instrument were strongly correlated (r2=0.80) to observations from Pandora spectrometers with a negligible bias (NMB=0.1 %). Remote-sensing observations from the TROPOMI instrument were generally well correlated with Pandora observations (r2=0.73) with a negative bias (NMB=-22.8 %). We intercompare different versions of TROPOMI data and find similar correlations across three versions but slightly different biases (from -22.8 % in v2.4.0 to -18.2 % in the NASA MINDS product). Compared to Pandora observations, the WRF-CAMx simulation had reduced correlation (r2=0.34) and a low bias (-25.5 %) over the entire study region. We find particularly poor agreement between simulated NO2 columns and GCAS-observed NO2 columns in downtown Houston an area of high population and roadway densities. These findings point to a potential underestimate of vehicle NOX emissions in the WRF-CAMx simulation driven by the Texas state inventory; and further investigation is recommended. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of EGUsphere is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)