Circ-Slain2 Alleviates Cartilage Degradation and Inflammation of TMJOA.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease with the cessation of matrix anabolism and aggravation of inflammation, which results in severe pain and impaired joint function. However, the mechanisms are not well understood. Circular RNAs (circRNAs) are reported to have various biological functions and participate in the development, diagnosis, prognosis, and treatment of different diseases. This study aimed to investigate the roles and mechanisms of circ-slain2 in TMJOA. We first established TMJOA mouse models and found circ-slain2 was lowly expressed in the cartilage of TMJOA through sequencing data. We observed that circ-slain2 is predominantly localized in the cytoplasm and downregulated in mouse condylar chondrocytes (mCCs) treated with tumor necrosis factor α (TNFα) and interferon γ (IFNγ). Micro–computed tomography and histological examination showed that intra-articular injection of circ-slain2 overexpressing adeno-associated virus could alleviate cartilage catabolism and synovial inflammation to relieve TMJOA in vivo. In addition, elevated circ-slain2 also showed anticatabolic and anti-inflammatory effects on IFNγ- and TNFα-stimulated mouse condylar chondrocytes (mCCs). Functional enrichment analysis indicated that protein processing in endoplasmic reticulum (ER) was associated with TMJOA, and further functional experiments confirmed that circ-slain2 could suppress ER stress in OA mCCs. RNA binding protein immunoprecipitation assay revealed an overt interaction between activating transcription factor 6 (ATF6) and circ-slain2. Inhibition of the expression of both ATF6 and circ-slain2 resulted in dilation of the ER and enhanced the expression of ER stress markers, whose ER stress level was higher than inhibition of ATF6 but lower than knockdown of circ-slain2 expression. Collectively, our research demonstrated that circ-slain2 could regulate ATF6 to relieve ER stress, reducing temporomandibular joint cartilage degradation and synovial inflammation. These findings provide prospects for developing novel osteoarthritis therapies based on circ-slain2 by focusing on reducing the inflammation of synovium and the imbalance between matrix synthesis and degradation. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Dental Research is the property of Sage Publications Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)