Characterization of Virulence Genes Associated with Type III Secretion System and Biofilm Formation in Pseudomonas aeruginosa Clinical Isolates.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Pseudomonas aeruginosa is a common pathogen with an increasing multidrug resistance (MDR) phenotype. Its virulence determinants include many factors such as antimicrobial resistance, biofilm formation, and type III secretion system (T3SS) which correlate with disease severity. There are no reports regarding the virulence features of P. aeruginosa in Cyprus. The aim of this study was to investigate the frequency and distribution of selected virulence-encoding genes and evaluate the biofilm formation potential as well as antibiotic resistance rates of isolates in the region. One hundred clinical P. aeruginosa isolates were obtained from clinical specimens and were identified using standard microbiological techniques. Antimicrobial susceptibility was assessed using the VITEK-2 system and biofilm quantification was performed by the microtiter plate assay with crystal violet staining. The presence of algD, exoU, exoT, and exoS was evaluated using polymerase chain reaction (PCR). Among all isolates, 35% were strong biofilm former, 28% were moderate biofilm former, 19% were weak biofilm former, and 18% were non-biofilm former. The rates of MDR and extensive drug resistance (XDR) were 26% and 1%. PCR analysis indicated that 93% of the isolates were algD positive. T3SS genes exoT, exoS, and exoU were detected in 91%, 63%, and 32% of the isolates, respectively. There was a high frequency of exoT + /exoS + genotype (61%), whereas exoT + /exoU + (32%) and exoS + /exoU + (2%) genotypes were relatively uncommon. This study reports the first dataset on the molecular profile of P. aeruginosa in Cyprus. Our results demonstrated that most strains have the biofilm-forming capacity with an algD-positive genotype and the majority carry exoT and exoS with a high frequency of exoT + /exoS + genotype. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Current Microbiology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)