Plastic Behavior of Metals and Their Sensitivity to Grain Size: Comparison between Two Multiscale Approaches.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      This study evaluates two multiscale models to determine their ability to describe the effect of grain size (GS) on the plastic behavior of ultrafine-grained (UFG) and nanocrystalline (NC) materials. One model follows the Hall–Petch type (Model-1), while the other adopts dislocation kinematics to illustrate the grain boundary effect (Model-2). The stress–strain relation was utilized to present predictions about how various copper and nickel grain sizes affect the evolution of their plastic behavior. These predictions were compared to each other and their respective experimental databases. The copper databases stem from a well-known published paper, while the nickel databases were sourced from a research project. An analysis was conducted to evaluate each model's ability to replicate the critical value (dcrit) for the UFG to NC transition. In the case of copper, both models produce a comparable dcrit of 16 nm. Model-1 has a lower sensitivity to yield stress below this value compared to Model-2. Both models accurately describe the weakening phase of metals below dcrit, particularly Model-2. The maximum error of 11% for copper was observed in Model-1, whereas Model-2 predicted a minimum error of 0.6%. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Crystals (2073-4352) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)