Assessing Predictive Ability of Dynamic Time Warping Functional Connectivity for ASD Classification.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Functional connectivity MRI (fcMRI) is a technique used to study the functional connectedness of distinct regions of the brain by measuring the temporal correlation between their blood oxygen level-dependent (BOLD) signals. fcMRI is typically measured with the Pearson correlation (PC), which assumes that there is no lag between time series. Dynamic time warping (DTW) is an alternative measure of similarity between time series that is robust to such time lags. We used PC fcMRI data and DTW fcMRI data as predictors in machine learning models for classifying autism spectrum disorder (ASD). When combined with dimension reduction techniques, such as principal component analysis, functional connectivity estimated with DTW showed greater predictive ability than functional connectivity estimated with PC. Our results suggest that DTW fcMRI can be a suitable alternative measure that may be characterizing fcMRI in a different, but complementary, way to PC fcMRI that is worth continued investigation. In studying different variants of cross validation (CV), our results suggest that, when it is necessary to tune model hyperparameters and assess model performance at the same time, a K -fold CV nested within leave-one-out CV may be a competitive contender in terms of performance and computational speed, especially when sample size is not large. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of International Journal of Biomedical Imaging is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)