Systemic screening of Fusarium oxysporum candidate effectors reveals FoSSP17 that suppresses plant immunity and contributes to virulence.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Fusarium oxysporum f. sp. cubense (Foc) causes Fusarium wilt of banana (Musa spp.), a notorious soil-borne vascular fungal disease threatening the global banana industry. Phytopathogens secrete effectors to suppress plant immunity. However, little is known about the effectors of Foc race 4 (Foc4). In this study, we built a streamlined screening system (candidate effector prediction, RNA-seq-based expression level analysis, and cell death manipulative activity assessment based on transient expression in Nicotiana benthamiana) to identify candidate virulence-related effectors. In total, 80 candidate effector genes (CEGs) differentially expressed during plant colonization were predicted; 12 out of 15 characterized CEGs, including FoSSP17, could suppress BAX-triggered programmed cell death (PCD) in N. benthamiana and were induced during the infection of plants. FoSSP17 encodes a novel protein conserved in the Fusarium genus. FoSSP17 gene deletion mutants were not affected in vegetative growth and conidiation but showed reduced virulence. Furthermore, the deletion mutants triggered higher expression levels of host defense-related genes including PR1, PR3, PR5, and PR10. Signal peptide activity assay and subcellular localization assay suggested that FoSSP17 is a conventional secretory protein that exerts cell-death-suppressive activity inside plant cells. In addition, FoSSP17 suppressed pattern-triggered immunity in plants by inhibiting reactive oxygen species (ROS) accumulation, reducing callose deposition, and suppressing the expression of NbLOX and NbERF1 genes related to jasmonic acid (JA)-pathway and ethylene (ET)-pathway, respectively. Overall, a systemic screening of Foc4 candidate effectors reveals that FoSSP17 contributes to the virulence of Foc4 and suppresses pattern-triggered immunity in plants. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Phytopathology Research is the property of BioMed Central and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)