Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Vulnerability assessment of peatland complexes in the Hudson Plains (Ontario, Canada) to permafrost‐thaw‐induced landcover and hydrological change using a multiscale approach.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Subject Terms:
- Abstract:
The Hudson Plains, Canada, is one of the largest, undisturbed peatland regions (370,000 km2) in the world. Air temperature in the Hudson Plains is increasing rapidly leading to unprecedented permafrost thaw. The region's remoteness has hindered our knowledge of how permafrost thaw alters peatland land cover and hydrological response at multiple scales. To assess which landscapes in the Hudson Plains are vulnerable to such disturbances, we analysed latitudinal distributions of land cover over a 300‐km transect spanning the sporadic (<30% areal) to continuous (>80% areal) permafrost zone in northern Ontario and quantified land cover changes over 40 years using multiple remote sensing datasets (lidar, air photographs, and high‐resolution satellite imagery). We then evaluated these landscapes at a fundamental hydrological unit, the peatland complex, identified five peatland complex types, and conceptualized their potential hydrological response using circuitry analogues. Over four decades, we found that permafrost peatlands declined by 4%, 8.5%, and 2% areal in the sporadic, discontinuous, and continuous permafrost zones, respectively. Circuitry analogues partitioned peatland complexes into their component peatland forms (e.g., permafrost peatland, bog, and fen) and represented each component's hydrological function using an electrical equivalent (e.g., generator, switch, and conductor). When interpreted at the landscape scale, circuitry analogues demonstrated latitudinal patterns in landscape structure (i.e., circuitry wiring) and indicated where permafrost thaw will have the greatest impact on landscape structure (i.e., rewiring) and therefore hydrological response. Based on these analyses, we suggest a 60‐km latitudinal segment (54.5°N to 54.9°N) where peatland complexes are most vulnerable to permafrost‐thaw‐induced land cover and hydrological change and should therefore be the focus of future research and monitoring efforts. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Ecohydrology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.