Intra-system uniformity: a natural outcome of dynamical sculpting.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      There is evidence that exoplanet systems display intra-system uniformity in mass, radius, and orbital spacing (like 'peas in a pod') when compared with the system-to-system variations of planetary systems. This has been interpreted as the outcome of the early stages of planet formation, indicative of a picture in which planets form at characteristic mass scales with uniform separations. In this paper, we argue instead that intra-system uniformity in planet sizes and orbital spacings likely arose from the dynamical sculpting of initially overly packed planetary systems (in other words, the giant impact phase). With a suite of N -body simulations, we demonstrate that systems with random initial masses and compact planet spacings naturally develop intra-system uniformity, in quantitative agreement with observations, due to collisions between planets. Our results suggest that the pre-giant impact planet mass distribution is fairly wide and provide evidence for the prevalence of dynamical sculpting in shaping the observed population of exoplanets. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Monthly Notices of the Royal Astronomical Society: Letters is the property of Oxford University Press / USA and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)