3D vessel extraction using a scale-adaptive hybrid parametric tracker.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      3D vessel extraction has great significance in the diagnosis of vascular diseases. However, accurate extraction of vessels from computed tomography angiography (CTA) data is challenging. For one thing, vessels in different body parts have a wide range of scales and large curvatures; for another, the intensity distributions of vessels in different CTA data vary considerably. Besides, surrounding interfering tissue, like bones or veins with similar intensity, also seriously affects vessel extraction. Considering all the above imaging and structural features of vessels, we propose a new scale-adaptive hybrid parametric tracker (SAHPT) to extract arbitrary vessels of different body parts. First, a geometry-intensity parametric model is constructed to calculate the geometry-intensity response. While geometry parameters are calculated to adapt to the variation in scale, intensity parameters can also be estimated to meet non-uniform intensity distributions. Then, a gradient parametric model is proposed to calculate the gradient response based on a multiscale symmetric normalized gradient filter which can effectively separate the target vessel from surrounding interfering tissue. Last, a hybrid parametric model that combines the geometry-intensity and gradient parametric models is constructed to evaluate how well it fits a local image patch. In the extraction process, a multipath spherical sampling strategy is used to solve the problem of anatomical complexity. We have conducted many quantitative experiments using the synthetic and clinical CTA data, asserting its superior performance compared to traditional or deep learning-based baselines. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Medical & Biological Engineering & Computing is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)