Interface engineering of NiSe2 nanowrinkles/Ni5P4 nanorods for boosting urea oxidation reaction at large current densities.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Deliberate modulation of the electronic structure via interface engineering is one of promising perspectives to build advanced catalysts for urea oxidation reaction (UOR) at high current densities. However, it still remains some challenges originating from the intrinsically sluggish UOR dynamics and the high energy barrier for urea adsorption. In response, we report the coupled NiSe2 nanowrinkles with Ni5P4 nanorods heterogeneous structure onto Ni foam (denoted as NiSe2@Ni5P4/NF) through successive phosphorization and selenization strategy, in which the produced closely contacted interface could provide high-flux electron transfer pathways. Theoretical findings decipher that the fast charge transfer takes place at the interfacial region from Ni5P4 to NiSe2, which is conducive to optimizing adsorption energy of urea molecules. As expected, the well-designed NiSe2@Ni5P4/NF only requires the low potential of 1.402 V at the current density of 500 mA·cm−2. More importantly, a small Tafel slope of 27.6 mV·dec−1, a high turnover frequency (TOF) value of 1.037 s−1 as well as the prolonged stability of 950 h at the current density of 100 mA·cm−2 are also achieved. This study enriches the understanding on the electronic structure modulation via interface engineering and offers bright prospect to design advanced UOR catalysts. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Nano Research is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)