In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Thorne RG;Thorne RG; Nicholson C
  • Source:
    Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2006 Apr 04; Vol. 103 (14), pp. 5567-72. Date of Electronic Publication: 2006 Mar 27.
  • Publication Type:
    Journal Article; Research Support, N.I.H., Extramural
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: National Academy of Sciences Country of Publication: United States NLM ID: 7505876 Publication Model: Print-Electronic Cited Medium: Print ISSN: 0027-8424 (Print) Linking ISSN: 00278424 NLM ISO Abbreviation: Proc Natl Acad Sci U S A Subsets: MEDLINE
    • Publication Information:
      Original Publication: Washington, DC : National Academy of Sciences
    • Subject Terms:
    • Abstract:
      Diffusion within the extracellular space (ECS) of the brain is necessary for chemical signaling and for neurons and glia to access nutrients and therapeutics; however, the width of the ECS in living tissue remains unknown. We used integrative optical imaging to show that dextrans and water-soluble quantum dots with Stokes-Einstein diameters as large as 35 nm diffuse within the ECS of adult rat neocortex in vivo. Modeling the ECS as fluid-filled "pores" predicts a normal width of 38-64 nm, at least 2-fold greater than estimates from EM of fixed tissue. ECS width falls below 10 nm after terminal ischemia, a likely explanation for the small ECS visualized in electron micrographs. Our results will improve modeling of neurotransmitter spread after spillover and ectopic release and establish size limits for diffusion of drug delivery vectors such as viruses, liposomes, and nanoparticles in brain ECS.
    • References:
      Pharmacol Ther. 2004 Oct;104(1):29-45. (PMID: 15500907)
      Biophys J. 2005 Nov;89(5):3660-8. (PMID: 16143636)
      Biochem J. 1991 Mar 15;274 ( Pt 3):699-705. (PMID: 2012600)
      Nature. 1966 Jun 25;210(5043):1391-2. (PMID: 5963780)
      Biophys J. 1999 Jul;77(1):542-52. (PMID: 10388779)
      Science. 2005 Jul 15;309(5733):446-51. (PMID: 16020730)
      Biophys J. 2004 Dec;87(6):4259-70. (PMID: 15361408)
      Science. 2003 May 30;300(5624):1434-6. (PMID: 12775841)
      J Anat. 1967 Apr;101(Pt 2):197-207. (PMID: 6040073)
      Biophys J. 1988 Feb;53(2):281-5. (PMID: 3345336)
      Cell Mol Life Sci. 2000 Feb;57(2):276-89. (PMID: 10766023)
      Nat Mater. 2005 Oct;4(10):713; author reply 714. (PMID: 16195756)
      Am J Anat. 1965 Sep;117(2):193-219. (PMID: 5883189)
      Biophys J. 1993 Dec;65(6):2277-90. (PMID: 7508761)
      Science. 2005 Jan 28;307(5709):538-44. (PMID: 15681376)
      Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8975-80. (PMID: 9671789)
      J Neurosci. 2004 Sep 15;24(37):8049-56. (PMID: 15371505)
      J Physiol. 1981 Dec;321:225-57. (PMID: 7338810)
      Hippocampus. 2005;15(4):441-50. (PMID: 15719413)
      Physiol Rev. 1985 Jan;65(1):101-48. (PMID: 3880896)
      Neuroscience. 2004;129(4):861-76. (PMID: 15561404)
      J Theor Biol. 2004 Jul 7;229(1):59-68. (PMID: 15178185)
      Neuron. 2003 Dec 18;40(6):1173-83. (PMID: 14687551)
      J Cereb Blood Flow Metab. 1997 Feb;17(2):191-203. (PMID: 9040499)
      Biophys J. 2000 Mar;78(3):1119-25. (PMID: 10692302)
      Science. 2002 Aug 9;297(5583):987-90. (PMID: 12169727)
      Biophys J. 1994 Feb;66(2 Pt 1):508-15. (PMID: 8161703)
      Neuron. 2004 Jun 10;42(5):757-71. (PMID: 15182716)
      Neuron. 2002 Nov 14;36(4):555-8. (PMID: 12441045)
      Biophys J. 1993 May;64(5):1638-46. (PMID: 8324199)
      Biophys J. 1996 May;70(5):2327-32. (PMID: 9172756)
      J Physiol. 1991 Oct;442:277-95. (PMID: 1798030)
      J Neurophysiol. 2004 Dec;92(6):3471-81. (PMID: 15269225)
      J Cell Biol. 1986 Jun;102(6):2015-22. (PMID: 2423529)
      J Cell Biol. 1997 Jul 14;138(1):131-42. (PMID: 9214387)
      Biophys J. 2003 Jul;85(1):581-8. (PMID: 12829512)
      Am J Physiol. 1951 Oct;167(1):13-46. (PMID: 14885465)
      Int Rev Cytol. 2000;192:189-221. (PMID: 10553280)
      Biophys J. 2002 Nov;83(5):2333-48. (PMID: 12414671)
      J Neurophysiol. 1999 May;81(5):2501-7. (PMID: 10322085)
      Biophys J. 1999 Nov;77(5):2837-49. (PMID: 10545381)
      J Neurosci. 1998 May 1;18(9):3158-70. (PMID: 9547224)
      Neuroscience. 1996 Dec;75(3):839-47. (PMID: 8951877)
      Trends Neurosci. 1998 May;21(5):207-15. (PMID: 9610885)
      J Cell Biol. 1969 Mar;40(3):648-77. (PMID: 5765759)
      J Neurosci. 2005 Aug 17;25(33):7538-47. (PMID: 16107641)
      J Neurophysiol. 2001 Apr;85(4):1761-71. (PMID: 11287497)
      Biophys J. 2001 Jan;80(1):542-8. (PMID: 11159424)
      J Neurosci. 2003 Sep 10;23(23):8351-9. (PMID: 12967997)
      Biophys J. 1999 Apr;76(4):1856-67. (PMID: 10096884)
      Am J Physiol. 1985 Sep;249(3 Pt 2):F374-89. (PMID: 4037090)
    • Grant Information:
      R01 NS028642 United States NS NINDS NIH HHS; R01 NS 28642 United States NS NINDS NIH HHS
    • Accession Number:
      0 (Dextrans)
    • Publication Date:
      Date Created: 20060329 Date Completed: 20060606 Latest Revision: 20220309
    • Publication Date:
      20240829
    • Accession Number:
      PMC1459394
    • Accession Number:
      10.1073/pnas.0509425103
    • Accession Number:
      16567637