Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Purified cellulase‐mediated simultaneous sugar utilization by Bacillus albus isolated from Similipal, Odisha, India.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Subject Terms:
- Abstract:
Among 24 isolated cellulolytic bacteria from Similipal Biosphere Reserve, the most efficient isolate was recognized as a strain of Bacillus albus. This strain of B. albus was evaluated for cellulase production and the cellulase activity was measured in submerged fermentation using substrate carboxymethyl cellulose (CMC). Different nutritional (carbon, nitrogen, and metal‐ion sources) and physical variables (pH, temperature, substrate concentration, and incubation time) during the growth of B. albus were optimized to obtain maximum cellulase activity. The highest cellulase activity of 5.79 U/mL for B. albus was observed at pH 6.75, temperature 37.5°C, CMC concentration 8.5 g/L, and 42 h incubation time. Further, supplementation of glucose as a subsidiary carbon source, yeast extract, peptone as nitrogen sources, and MgSO4 and MnSO4 as metal‐ion sources enhance the cellulase activity of B. albus. The purified enzyme was reported to have a molecular weight of ∼54 kDa as determined by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. A zymogram analysis evidenced the cellulase activity of the purified enzyme fractions obtained from diethylaminoethyl cellulose chromatography. The purified cellulase was reported to have an optimum pH and temperature of 7.0°C and 50°C, respectively with a capacity of retaining its 60% residual activity within pH 6.0–8.0 and temperature 30–40°C, respectively. The metal ions, K+ and Na+ were the activators, while Pb2+ and Hg2+ were the inhibitors for the purified cellulase. The purified cellulase showed Km and Vmax values of 0.38 M and 8.19 U/mL, respectively, in presence of the substrate CMC and also simultaneous consumption of both hexose and pentose sugars. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Journal of Basic Microbiology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.