Effects of Gluteus Maximus Muscle Activity and Pelvic Width on Dynamic Frontal Plane Hip Joint Stiffness During Gait in Healthy Young Women.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Context: Excessive hip adduction and internal rotation are abnormal movements that may lead to the onset and progression of patellofemoral pain. Previous studies have reported that lower dynamic frontal plane hip joint stiffness in the gait of women is associated with the magnitude of hip adduction and internal rotation angles. However, the factors contributing to the lack of dynamic frontal plane hip joint stiffness in the gait of young women are unclear. This study aims to investigate the factors affecting dynamic frontal plane hip joint stiffness during the weight-acceptance phase of the gait of healthy young women. Design: Cross-sectional study. Methods: This study included 30 healthy women between the ages of 18 and 30 years. The pelvic width/femur length ratio was calculated by dividing the pelvic width by the femur length. Data on hip kinematics and kinetics and activation of the gluteus maximus and medius, tensor fasciae latae, and adductor longus muscles during gait were collected using a motion capture system, force plates, and surface electromyography. Stepwise multiple regression analysis was conducted to determine the extent to which each independent factor affected dynamic frontal plane hip joint stiffness. Results: In healthy young women, decreased dynamic frontal plane hip joint stiffness was associated with decreased muscle activity of the gluteus maximus during the gait, as well as greater pelvic width/femur length ratio. Conclusions: Women with a relatively great pelvic width relative to femur length may have more difficulty in producing dynamic frontal plane hip joint stiffness. However, increasing the muscle activity of the gluteus maximus may contribute to increased dynamic frontal plane hip joint stiffness. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Sport Rehabilitation is the property of Human Kinetics Publishers, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)