Suitability of select micro-green, ornamental and legume plants for use in green walls: a novel brewery wastewater treatment option.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Green walls are increasingly popular in urban settings with demonstrated beneficial use as vertical gardens, building envelops, and uniquely orientated green space to improve urban biodiversity and air quality. This research evaluated the suitability of green wall plants for the preliminary treatment of wastewater generated by food and beverage makers, quantifying suitability with plant growth metrics. Edible micro-green, ornamental, and legume plants were planted in perlite filled pots and irrigated continuously with untreated brewery wastewater or a control of Hoaglands solution. Plants receiving wastewater had less growth than the control. Stem growth for microgreen and legume plants that were started from seed was 798% and 253% less, respectively, when irrigated with 100% brewery wastewater. The stem growth of established ornamental plants was 26% less when irrigated with the wastewater. Wastewater irrigated plants with the highest rates of growth and survivability included the mustard plant (Brassica juncea), and ornamental plants Epipremnum aureum (Golden Pothos) and Chlorophytum comosum (Spider Plant). Growth metrics for wastewater irrigated legumes were higher for plants inoculated with rhizobia, than plants without the inoculation, which suggests low available nitrogen concentrations, rather than toxicity of the wastewater, limited plant growth. The results suggest that ornamental plants such as Epipremnum aureum and Chlorophytum comosum can be sustained, without the addition of supplemental nutrients, in a green wall utilized to treat brewery wastewater. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Environmental Technology is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)