Inpainting truncated areas of CT images based on generative adversarial networks with gated convolution for radiotherapy.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      This study aimed to inpaint the truncated areas of CT images by using generative adversarial networks with gated convolution (GatedConv) and apply these images to dose calculations in radiotherapy. CT images were collected from 100 patients with esophageal cancer under thermoplastic membrane placement, and 85 cases were used for training based on randomly generated circle masks. In the prediction stage, 15 cases of data were used to evaluate the accuracy of the inpainted CT in anatomy and dosimetry based on the mask with a truncated volume covering 40% of the arm volume, and they were compared with the inpainted CT synthesized by U-Net, pix2pix, and PConv with partial convolution. The results showed that GatedConv could directly and effectively inpaint incomplete CT images in the image domain. For the results of U-Net, pix2pix, PConv, and GatedConv, the mean absolute errors for the truncated tissue were 195.54, 196.20, 190.40, and 158.45 HU, respectively. The mean dose of the planning target volume, heart, and lung in the truncated CT was statistically different (p < 0.05) from those of the ground truth CT ( CT gt ). The differences in dose distribution between the inpainted CT obtained by the four models and CT gt were minimal. The inpainting effect of clinical truncated CT images based on GatedConv showed better stability compared with the other models. GatedConv can effectively inpaint the truncated areas with high image quality, and it is closer to CT gt in terms of image visualization and dosimetry than other inpainting models. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Medical & Biological Engineering & Computing is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)