Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Source-Specific Air Pollution Including Ultrafine Particles and Risk of Myocardial Infarction: A Nationwide Cohort Study from Denmark.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Poulsen, Aslak Harbo; Sørensen, Mette; Hvidtfeldt, Ulla Arthur; Christensen, Jesper H.; Brandt, Jørgen; Frohn, Lise Marie; Ketzel, Matthias; Andersen, Christopher; Raaschou-Nielsen, Ole
- Source:
Environmental Health Perspectives. May2023, Vol. 131 Issue 5, p057010-1-057010-8. 8p. 3 Charts, 1 Graph.
- Additional Information
- Subject Terms:
- Subject Terms:
- Abstract:
BACKGROUND: Air pollution is negatively associated with cardiovascular health. Impediments to efficient regulation include lack of knowledge about which sources of air pollution contributes most to health burden and few studies on effects of the potentially more potent ultrafine particles (UFP). OBJECTIVE: The authors aimed to investigate myocardial infarction (MI) morbidity and specific types and sources of air pollution. METHODS: We identified all persons living in Denmark in the period 2005–2017, age >50 y and never diagnosed with MI. We quantified 5-y running time-weighted mean concentrations of air pollution at residencies, both total and apportioned to traffic and nontraffic sources. We evaluated particulate matter (PM) with aerodynamic diameter ≤ 2.5 μm (PM2.5), <0.1 μm (UFP), elemental carbon (EC), and nitrogen dioxide (NO2). We used Cox proportional hazards models, with adjustment for time-varying exposures, and personal and area-level demographic and socioeconomic covariates from high-quality administrative registers. RESULTS: In this nationwide cohort of 1,964,702 persons (with 18 million person-years of follow-up and 71,285 cases of MI), UFP and PM2.5 were associated with increased risk of MI with hazard ratios (HRs) per interquartile range (IQR) of 1.040 [95% confidence interval (CI): 1.025, 1.055] and 1.053 (95% CI: 1.035, 1.071), respectively. HRs per IQR of UFP and PM2.5 from nontraffic sources were similar to the total (1.034 and 1.051), whereas HRs for UFP and PM2.5 from traffic sources were smaller (1.011 and 1.011). The HR for EC from traffic sources was 1.013 (95% CI: 1.003, 1.023). NO2 from nontraffic sources was associated with MI (HR =1.048; 95% CI: 1.034, 1.062) but not from traffic sources. In general, nontraffic sources contributed more to total air pollution levels than national traffic sources. CONCLUSIONS: PM2.5 and UFP from traffic and nontraffic sources were associated with increased risk of MI, with nontraffic sources being the dominant source of exposure and morbidity. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Environmental Health Perspectives is the property of National Institute of Environmental Health Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.