Item request has been placed!
×
Item request cannot be made.
×
Processing Request
MOLECULAR RESPONSES TO ACUTE EXERCISE AND THEIR RELEVANCE FOR ADAPTATIONS IN SKELETALMUSCLE TO EXERCISE TRAINING.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
Repeated, episodic bouts of skeletal muscle contraction undertaken frequently as structured exercise training are a potent stimulus for physiological adaptation in many organs. Specifically, in skeletal muscle, remarkable plasticity is demonstrated by the remodeling of muscle structure and function in terms of muscular size, force, endurance, and contractile velocity as a result of the functional demands induced by various types of exercise training. This plasticity, and the mechanistic basis for adaptations to skeletal muscle in response to exercise training, are underpinned by activation and/or repression of molecular pathways and processes in response to each individual acute exercise session. These pathways include the transduction of signals arising from neuronal, mechanical, metabolic, and hormonal stimuli through complex signal transduction networks, which are linked to a myriad of effector proteins involved in the regulation of pre- and posttranscriptional processes, and protein translation and degradation processes. This review therefore describes acute exercise-induced signal transduction and the molecular responses to acute exercise in skeletal muscle including emerging concepts such as epigenetic pre- and posttranscriptional regulation and the regulation of protein translation and degradation. A critical appraisal of methodological approaches and the current state of knowledge informs a series of recommendations offered as future directions in the field. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Physiological Reviews is the property of American Physiological Society and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.