Mismatches in thermal performance between ectothermic predators and prey alter interaction strength and top-down control.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Climate change can alter predator–prey interactions when predators and prey have different thermal preferences as temperature change can exacerbate thermal mismatches (also called thermal asymmetry) with population-level consequences. We tested this using micro-arthropod predators (Stratiolaelaps scimitus) and prey (Folsomia candida) that differ in their temperature optima to examine predator–prey interactions across two temperature ranges, a cool (12 and 20 °C) and warm (20 and 26 °C) range. We predict that the lower thermal preference and optimum in F. candida will alter top-down control (i.e., interaction strength) by predators with interaction strength being strongest at intermediate temperatures, coinciding with F. candida thermal optimum. Predators and prey were placed in mesocosms, whereafter we measured population (predator and prey abundance), trait-based (average predator and prey body mass, and prey body length distribution), and predator–prey indices (predator–prey mass ratio (PPMR), Dynamic Index, and Log Response Ratio) to determine how temperature affected their interactions. Prey populations were the highest at intermediate temperatures (average temperature exposure: 16–23 °C) but declined at warmer temperatures (average temperature exposure: 24.5–26 °C). Predators consistently lowered prey abundances and average prey mass increased when predators were added. Top-down control was the greatest at intermediate temperatures (indicated by Log Response Ratio) when temperatures were near or below the thermal optimum for both species. Temperature-related prey declines negated top-down control under the warmest conditions suggesting that mismatches in thermal performance between predators and their prey will alter the strength and dominance of top-down or bottom-up forces of predator–prey interactions in a warmer world. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Oecologia is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)