Item request has been placed!
×
Item request cannot be made.
×
Processing Request
The Emerging Role of Heat Shock Factor 1 (HSF1) and Heat Shock Proteins (HSPs) in Ferroptosis.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
Cells employ a well-preserved physiological stress response mechanism, termed the heat shock response, to activate a certain type of molecular chaperone called heat shock proteins (HSPs). HSPs are activated by transcriptional activators of heat shock genes known as heat shock factors (HSFs). These molecular chaperones are categorized as the HSP70 superfamily, which includes HSPA (HSP70) and HSPH (HSP110) families; the DNAJ (HSP40) family; the HSPB family (small heat shock proteins (sHSPs)); chaperonins and chaperonin-like proteins; and other heat-inducible protein families. HSPs play a critical role in sustaining proteostasis and protecting cells against stressful stimuli. HSPs participate in folding newly synthesized proteins, holding folded proteins in their native conformation, preventing protein misfolding and accumulation, and degrading denatured proteins. Ferroptosis is a recently identified type of oxidative iron-dependent cell demise. It was coined recently in 2012 by Stockwell Lab members, who described a special kind of cell death induced by erastin or RSL3. Ferroptosis is characterized by alterations in oxidative status resulting from iron accumulation, increased oxidative stress, and lipid peroxidation, which are mediated by enzymatic and non-enzymatic pathways. The process of ferroptotic cell death is regulated at multiple, and it is involved in several pathophysiological conditions. Much research has emerged in recent years demonstrating the involvement of HSPs and their regulator heat shock factor 1 (HSF1) in ferroptosis regulation. Understanding the machinery controlling HSF1 and HSPs in ferroptosis can be employed in developing therapeutic interventions for ferroptosis occurrence in a number of pathological conditions. Therefore, this review comprehensively summarized the basic characteristics of ferroptosis and the regulatory functions of HSF1 and HSPs in ferroptosis. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Pathophysiology is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.