Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Chereau D;Chereau D; Kerff F; Graceffa P; Grabarek Z; Langsetmo K; Dominguez R
  • Source:
    Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2005 Nov 15; Vol. 102 (46), pp. 16644-9. Date of Electronic Publication: 2005 Nov 07.
  • Publication Type:
    Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: National Academy of Sciences Country of Publication: United States NLM ID: 7505876 Publication Model: Print-Electronic Cited Medium: Print ISSN: 0027-8424 (Print) Linking ISSN: 00278424 NLM ISO Abbreviation: Proc Natl Acad Sci U S A Subsets: MEDLINE
    • Publication Information:
      Original Publication: Washington, DC : National Academy of Sciences
    • Subject Terms:
    • Abstract:
      Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 (WH2) is a small and widespread actin-binding motif. In the WASP family, WH2 plays a role in filament nucleation by Arp2/3 complex. Here we describe the crystal structures of complexes of actin with the WH2 domains of WASP, WASP-family verprolin homologous protein, and WASP-interacting protein. Despite low sequence identity, WH2 shares structural similarity with the N-terminal portion of the actin monomer-sequestering thymosin beta domain (Tbeta). We show that both domains inhibit nucleotide exchange by targeting the cleft between actin subdomains 1 and 3, a common binding site for many unrelated actin-binding proteins. Importantly, WH2 is significantly shorter than Tbeta but binds actin with approximately 10-fold higher affinity. WH2 lacks a C-terminal extension that in Tbeta4 becomes involved in monomer sequestration by interfering with intersubunit contacts in F-actin. Owing to their shorter length, WH2 domains connected in tandem by short linkers can coexist with intersubunit contacts in F-actin and are proposed to function in filament nucleation by lining up actin subunits along a filament strand. The WH2-central region of WASP-family proteins is proposed to function in an analogous way by forming a special class of tandem repeats whose function is to line up actin and Arp2 during Arp2/3 nucleation. The structures also suggest a mechanism for how profilin-binding Pro-rich sequences positioned N-terminal to WH2 could feed actin monomers directly to WH2, thereby playing a role in filament elongation.
    • References:
      Nat Cell Biol. 2000 Jul;2(7):441-8. (PMID: 10878810)
      Biophys J. 2000 May;78(5):2516-27. (PMID: 10777749)
      J Mol Evol. 2000 Oct;51(4):378-81. (PMID: 11040289)
      Nat Cell Biol. 2001 Jan;3(1):76-82. (PMID: 11146629)
      Nat Cell Biol. 2001 May;3(5):484-91. (PMID: 11331876)
      Science. 2001 Nov 23;294(5547):1679-84. (PMID: 11721045)
      J Biol Chem. 2001 Dec 7;276(49):45555-63. (PMID: 11579089)
      FEBS Lett. 2002 Feb 20;513(1):92-7. (PMID: 11911886)
      J Biol Chem. 2002 Apr 26;277(17):14786-92. (PMID: 11856744)
      Arch Biochem Biophys. 2002 Oct 15;406(2):296-301. (PMID: 12361718)
      Mol Biol Cell. 2002 Nov;13(11):4045-59. (PMID: 12429845)
      Cell. 2003 Feb 21;112(4):453-65. (PMID: 12600310)
      J Biol Chem. 2003 Mar 7;278(10):8452-9. (PMID: 12482861)
      Nat Struct Biol. 2003 Aug;10(8):591-8. (PMID: 12872157)
      J Biol Chem. 2003 Sep 5;278(36):34172-80. (PMID: 12813032)
      J Biol Chem. 2004 May 28;279(22):23637-45. (PMID: 15039431)
      Cell. 2004 May 28;117(5):611-23. (PMID: 15163409)
      FEBS Lett. 2004 Aug 27;573(1-3):231-2; author reply 233. (PMID: 15328003)
      EMBO J. 2004 Sep 15;23(18):3599-608. (PMID: 15329672)
      Mol Biol Cell. 2004 Oct;15(10):4735-48. (PMID: 15269284)
      J Cell Biol. 2004 Sep 27;166(7):957-62. (PMID: 15452139)
      Trends Biochem Sci. 2004 Nov;29(11):572-8. (PMID: 15501675)
      Biochemistry. 1988 Aug 23;27(17):6214-20. (PMID: 3219333)
      Nature. 1990 Sep 6;347(6288):37-44. (PMID: 2395459)
      Nature. 1990 Sep 6;347(6288):44-9. (PMID: 2395461)
      Nature. 1993 Oct 28;365(6449):810-6. (PMID: 8413665)
      Cell. 1996 Mar 8;84(5):723-34. (PMID: 8625410)
      Biochem Biophys Res Commun. 1997 Feb 24;231(3):686-91. (PMID: 9070872)
      Biochemistry. 1997 Jul 8;36(27):8384-92. (PMID: 9204886)
      EMBO J. 1998 Nov 16;17(22):6516-26. (PMID: 9822597)
      Curr Biol. 1998 Dec 17-31;8(25):1347-56. (PMID: 9889097)
      Nat Struct Biol. 1999 Jul;6(7):666-71. (PMID: 10404225)
      Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. (PMID: 15572765)
      Nature. 2005 Jan 27;433(7024):382-8. (PMID: 15674283)
      Trends Biochem Sci. 2005 Jun;30(6):342-53. (PMID: 15950879)
      J Cell Biol. 2000 Sep 4;150(5):1001-12. (PMID: 10973991)
    • Grant Information:
      R01 GM073791 United States GM NIGMS NIH HHS; GM073791 United States GM NIGMS NIH HHS
    • Molecular Sequence:
      PDB 2A3Z; 2A40; 2A41; 2A42
    • Accession Number:
      0 (Actins)
      0 (Nucleotides)
      0 (WAS protein, human)
      0 (Wiskott-Aldrich Syndrome Protein)
    • Publication Date:
      Date Created: 20051109 Date Completed: 20060203 Latest Revision: 20181113
    • Publication Date:
      20221213
    • Accession Number:
      PMC1283820
    • Accession Number:
      10.1073/pnas.0507021102
    • Accession Number:
      16275905