Pretreatment of rhesus monkeys with transdermal patches containing physostigmine and procyclidine: implications of the delivery system for the potential application against VX nerve agent intoxication in humans.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Physostigmine (Phs) is a reversible inhibitor of acetylcholinesterase (AChE) that penetrates the blood–brain barrier (BBB) and could be used to protect the central nervous system (CNS) against the effects of nerve agents. For prophylactic effectiveness, long, steady, and adequate inhibition of AChE activity by Phs is needed to broadly protect against the CNS effects of nerve agents. Here, we evaluated the efficacy of transdermal patches containing Phs and procyclidine (PC) as prophylactic agents. Patches (25 cm2) containing 4.4 mg Phs and 17.8 mg PC had a protective ratio of approximately 78.6-fold in rhesus monkeys challenged with VX nerve agent and given an antidote. Physiologically based pharmacokinetic model in conjunction with an indirect pharmacodynamic (PBPK/PD) was developed for Phs and scaled to rhesus monkeys. The model was able to reproduce the concentration profile and inhibitory effect on AChE of Phs in monkeys, as evidenced by correlation coefficients of 0.994 and 0.992 for 25 cm2 and 49 cm2 patches, respectively (i.e., kinetic data), and 0.989 and 0.968 for 25 cm2 and 49 cm2 patches, respectively (i.e., dynamic data). By extending the monkey PBPK/ PD model to humans, the effective human dose was predicted to be five applications of a 25 cm2 patch (i.e., 22 mg Phs), and two applications of a 49 cm2 patch (i.e., 17.4 mg Phs). Therefore, given that patch application of Phs in rhesus monkeys has a prolonged effect (namely, AChE inhibition of 19.6% for the 25 cm2 patch and 23.0% for the 49 cm2 patch) for up to 216 h, patch formulation of Phs may provide similar protection against nerve agent intoxication in humans. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Archives of Toxicology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)