Intragroup and intragenomic conflict over chemical defense against predators.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Insects are often chemically defended against predators. There is considerable evidence for a group-beneficial element to their defenses, and an associated potential for individuals to curtail their own investment in costly defense while benefitting from the investments of others, termed "automimicry." Although females in chemically defended taxa often lay their eggs in clusters, leading to siblings living in close proximity, current models of automimicry have neglected kin-selection effects, which may be expected to curb the evolution of such selfishness. Here, we develop a general theory of automimicry that explicitly incorporates kin selection. We investigate how female promiscuity modulates intragroup and intragenomic conflicts overinvestment into chemical defense, finding that individuals are favored to invest less than is optimal for their group, and that maternal-origin genes favor greater investment than do paternal-origin genes. We translate these conflicts into readily testable predictions concerning gene expression patterns and the phenotypic consequences of genomic perturbations, and discuss how our results may inform gene discovery in relation to economically important agricultural products. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Ecology & Evolution (20457758) is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)