Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Synthesis, DFT Studies, Molecular Docking and Biological Activity Evaluation of Thiazole-Sulfonamide Derivatives as Potent Alzheimer's Inhibitors.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Khan, Shoaib; Ullah, Hayat; Taha, Muhammad; Rahim, Fazal; Sarfraz, Maliha; Iqbal, Rashid; Iqbal, Naveed; Hussain, Rafaqat; Ali Shah, Syed Adnan; Ayub, Khurshid; Albalawi, Marzough Aziz; Abdelaziz, Mahmoud A.; Alatawi, Fatema Suliman; Khan, Khalid Mohammed
- Source:
Molecules; Jan2023, Vol. 28 Issue 2, p559, 27p
- Subject Terms:
- Additional Information
- Subject Terms:
- Abstract:
Alzheimer's disease is a major public brain condition that has resulted in many deaths, as revealed by the World Health Organization (WHO). Conventional Alzheimer's treatments such as chemotherapy, surgery, and radiotherapy are not very effective and are usually associated with several adverse effects. Therefore, it is necessary to find a new therapeutic approach that completely treats Alzheimer's disease without many side effects. In this research project, we report the synthesis and biological activities of some new thiazole-bearing sulfonamide analogs (1–21) as potent anti-Alzheimer's agents. Suitable characterization techniques were employed, and the density functional theory (DFT) computational approach, as well as in-silico molecular modeling, has been employed to assess the electronic properties and anti-Alzheimer's potency of the analogs. All analogs exhibited a varied degree of inhibitory potential, but analog 1 was found to have excellent potency (IC50 = 0.10 ± 0.05 µM for AChE) and (IC50 = 0.20 ± 0.050 µM for BuChE) as compared to the reference drug donepezil (IC50 = 2.16 ± 0.12 µM and 4.5 ± 0.11 µM). The structure-activity relationship was established, and it mainly depends upon the nature, position, number, and electron-donating/-withdrawing effects of the substituent/s on the phenyl rings. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Molecules is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.