Selective depletion of polymorphonuclear myeloid derived suppressor cells in tumor beds with near infrared photoimmunotherapy enhances host immune response.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      The immune system is recognized as an important factor in regulating the development, progression, and metastasis of cancer. Myeloid-derived suppressor cells (MDSCs) are a major immune-suppressive cell type by interfering with T cell activation, promoting effector T cell apoptosis, and inducing regulatory T cell expansion. Consequently, reducing or eliminating MDSCs has become a goal of some systemic immunotherapies. However, by systemically reducing MDSCs, unwanted side effects can occur. Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed treatment that selectively kills targeted cells without damaging adjacent normal cells. The aim of this study is to evaluate the antitumor efficacy of MDSCdirected NIR-PIT utilizing anti-Ly6G antibodies to specifically destroy polymorphonuclear (PMN)-MDSCs in the tumor microenvironment (TME) in syngeneic mouse models. PMN-MDSCs were selectively eliminated within tumors by Ly6G-targeted NIR-PIT. There was significant tumor growth suppression and prolonged survival in three treated tumor models. In the early phase after NIR-PIT, dendritic cell maturation/activation and CD8+ T cell activation were enhanced in both intratumoral tissues and tumor-draining lymph nodes, and NK cells demonstrated increased expression of cytotoxic molecules. Host immunity remained activated in the TME for at least one week after NIR-PIT. Abscopal effects in bilateral tumor models were observed. Furthermore, the combination of NIR-PIT targeting cancer cells and PMN-MDSCs yielded synergistic effects and demonstrated highly activated host tumor immunity. In conclusion, we demonstrated that selective local PMN-MDSCs depletion by NIR-PIT could be a promising new cancer immunotherapy. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of OncoImmunology is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)