Patterns and controls of aboveground litter inputs to temperate forests.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Aboveground litter production is an important biogeochemical pathway in forests whereby carbon and nutrients enter soil detrital pools. However, patterns and controls of aboveground litter production are often based on an understanding of how autumnal, foliar inputs are related to aboveground tree production. Here we use three separate data sources of aboveground litter production in temperate forests to ask how aboveground woody productivity affects foliar litter production in light of other factors, such as the climate sensitivity of litter production and the seasonality of not only foliar but also fine woody debris and reproductive litter inputs. We find that foliar litter production increases with aboveground woody production, and this relationship is modified both by plant functional group and climate. Basal area also provides a crucial control on litter production. Conifer forests produce approximately half as much foliar litter as broadleaf deciduous forests. Litter production is sensitive to both among-site and among-year variation in climate, such that more litter is produced in warmer, wetter locations and years. On average 72% of aboveground litter is foliar material, with the remaining split about evenly between fine woody debris and reproductive material, and although about 88% of broadleaf litter falls during autumn, only about 61% of needles, 37% of fine woody debris and 43% of reproductive material falls during the same period. Together these results illustrate key differences in the controls of litter production in coniferous and deciduous forests, and highlight the importance of often overlooked litter fluxes, including non-autumn and non-foliar litterfall. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Biogeochemistry is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)