Periodic Environmental Disturbance Drives Repeated Ecomorphological Diversification in an Adaptive Radiation of Antarctic Fishes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      The ecological theory of adaptive radiation has profoundly shaped our conceptualization of the rules that govern diversification. However, while many radiations follow classic early-burst patterns of diversification as they fill ecological space, the longer-term fates of these radiations depend on many factors, such as climatic stability. In systems with periodic disturbances, species-rich clades can contain nested adaptive radiations of subclades with their own distinct diversification histories, and how adaptive radiation theory applies in these cases is less clear. Here, we investigated patterns of ecological and phenotypic diversification within two iterative adaptive radiations of cryonotothenioid fishes in Antarctica's Southern Ocean: crocodile icefishes and notoperches. For both clades, we observe evidence of repeated diversification into disparate regions of trait space between closely related taxa and into overlapping regions of trait space between distantly related taxa. We additionally find little evidence that patterns of ecological divergence are correlated with evolution of morphological disparity, suggesting that these axes of divergence may not be tightly linked. Finally, we reveal evidence of repeated convergence in sympatry that suggests niche complementarity. These findings reflect the dynamic history of Antarctic marine habitats and may guide hypotheses of diversification dynamics in environments characterized by periodic disturbance. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of American Naturalist is the property of University of Chicago and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)