Combined treatment with Rg1 and adipose-derived stem cells alleviates DSS-induced colitis in a mouse model.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Background: Inflammatory bowel diseases, consisting of Crohn's disease and ulcerative colitis constitute chronic inflammatory conditions that may compromise the whole gastrointestinal tract as well as the colonic mucosa. Currently, there are no curative interventions for IBD, and all available treatments have side effects that limit their use. Adipose-derived stem cell (ADSC) treatment is a prospective treatment option for IBD. Previous findings indicated that ginsenoside (Rg1) dampened inflammatory diseases like colitis by inhibiting the binding of LPS to TLR4 on macrophages and restoring the Th17/Treg ratio. The purpose of this work was to investigate whether Rg1 can increase the influence of ADSC in a mouse model of colitis triggered by dextran sulfate sodium (DSS). Methods: ADSC was intravenously inoculated into mice with DSS-triggered colitis, while Rg1 was delivered via oral gavage. Colon inflammation was assessed via body weight, colon length along with H&E staining. Serum cytokine levels were measured using ELISA. Besides, flow cytometry was adopted to determine the percentage, as well as FMI of immune cells in the spleen. The effects of simultaneous Rg1 and ADSC treatment on TLR4-MyD88 signaling were assessed via immunofluorescence. Results: Rg1 and ADSC effectively alleviated the impacts of colon inflammation, weight loss, and colon length reduction along with histological score. Treatment with Rg1 and ADSC reduced serum levels of the proinflammatory cytokines, IL-1β, TNF-α, IL-6, IL-4, and IL-17A and upregulated the level of immunosuppressive cytokine, IL-10. Compared with ADSC or Rg1 alone, combined treatment with Rg1 and ADSC significantly improved the structure of microbial community. Additionally, treatment with Rg1 plus ADSC selectively elevated the level of splenic regulatory T (Treg) cells and downregulated the proportion of T helper type 17 (Th17) cells, indicating restoration of intestinal homeostasis. Besides, we established that the combination of ADSC + Rg1 restored immunological balance more effectively than either ADSC or Rg1 alone, illustrating that Rg1's modulatory function on the gut microbiota may boost the impact of ADSCs in restoration of the immune balance. ADSC combined with Rg1 might downregulate the expression of TLR4 and MyD88, thereby suppressing TLR4-MyD8 signaling. The immunofluorescence results also suggested that co-therapy with Rg-1 and ADSC may optimize treatment strategies of IBD. Conclusions: Here, we find that the combination of Rg1 and ADSC alleviates DSS-induced colitis in a mouse model more efficiently than ADSC alone, indicating that Rg1 enhances the effect of ADSC against colitis. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Stem Cell Research & Therapy is the property of BioMed Central and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)