Decomposition of loosely coupled integer programs: a multiobjective perspective.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      We consider integer programming (IP) problems consisting of (possibly a large number of) subsystems and a small number of coupling constraints that link variables from different subsystems. Such problems are called loosely coupled or nearly decomposable. In this paper, we exploit the idea of resource-directive decomposition to reformulate the problem so that it can be decomposed into a resource-directive master problem and a set of multiobjective programming subproblems. Recent methods developed for solving multiobjective problems enable us to formulate a relaxation of the master problem that is an IP whose solution yields a dual bound on the value of the original IP. This perspective provides a new, general framework for IP decomposition, in which many alternative algorithm designs are possible. Here, we develop one such algorithm, and demonstrate its viability and potential benefits with the aid of computational experiments knapsack-based instances with up to five coupling constraints and 7500 variables, comparing it with both a standard IP solver and a generic branch-and-price solver. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Mathematical Programming is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)