Development of Fishing Vessel Identification Model Based on Deep Neural Network.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Subject Terms:
    • Abstract:
      This paper presents a deep neural network (DNN)‐based model to recognize fishing vessels. In Taiwan, the vast majority of small fishing vessels are not equipped with an automatic identification system (AIS). As a consequence, the staff in a fishing port administration become heavily loaded when monitoring and managing the fishing vessels accessing a port. The workload is expected to be eased using this work. For the first time in the literature, a captured fishing vessel image was converted to a 128‐dimensional embedding for recognition purposes. The presented model gave a false positive rate (FPR) as low as 1.13% and an accuracy up to 99.47% at threshold = 0.772379. Finally, all the performance metrics, namely, the true positive rate (TPR), the FPR, precision and accuracy, are actually functions of the threshold which can be specified by users to meet specific requirements. © 2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of IEEJ Transactions on Electrical & Electronic Engineering is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)