Parameters of high-frequency jet ventilation using a mechanical lung model.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      High frequency jet ventilationis a mechanical lung ventilation method which uses a relatively high flow usually through an open system. This work examined the effect of high-frequency jet ventilation on respiratory parameters of an intubated patient simulated using a high-frequency jet ventilator attached to a ventilation monitor for measurements of ventilation parameters. The series of experiments altered specific parameters each time (respiratory rate, inspiratory-expiratory (I:E) ratio, and inspiratory pressure), under different lung compliances. A reduction of minute ventilation was observed alongside a rise in respiratory rate, with low airway pressures over the entire range of lung compliances. In addition, an I:E ratio of 2:1 to 1:1; and the tidal and minute volumes were directly related to the inspiratory pressure over all compliance settings. To conclude, the respiratory mechanics in high-frequency jet ventilation are very different from those of conventional rate ventilation in a lung model. Further studies on patients and/or a biological model are needed to investigate pCO2 and end-tidal carbon-dioxide during high-frequency jet ventilation. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Medical Engineering & Technology is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)