Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Bayesian regression and model selection for isothermal titration calorimetry with enantiomeric mixtures.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
Bayesian regression is performed to infer parameters of thermodynamic binding models from isothermal titration calorimetry measurements in which the titrant is an enantiomeric mixture. For some measurements the posterior density is multimodal, indicating that additional data with a different protocol are required to uniquely determine the parameters. Models of increasing complexity—two-component binding, racemic mixture, and enantiomeric mixture—are compared using model selection criteria. To precisely estimate one of these criteria, the Bayes factor, a variation of bridge sampling is developed. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.