Accounting for delayed entry into observational studies and clinical trials: length-biased sampling and restricted mean survival time.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Individuals in many observational studies and clinical trials for chronic diseases are enrolled well after onset or diagnosis of their disease. Times to events of interest after enrollment are therefore residual or left-truncated event times. Individuals entering the studies have disease that has advanced to varying extents. Moreover, enrollment usually entails probability sampling of the study population. Finally, event times over a short to moderate time horizon are often of interest in these investigations, rather than more speculative and remote happenings that lie beyond the study period. This research report looks at the issue of delayed entry into these kinds of studies and trials. Time to event for an individual is modelled as a first hitting time of an event threshold by a latent disease process, which is taken to be a Wiener process. It is emphasized that recruitment into these studies often involves length-biased sampling. The requisite mathematics for this kind of sampling and delayed entry are presented, including explicit formulas needed for estimation and inference. Restricted mean survival time (RMST) is taken as the clinically relevant outcome measure. Exact parametric formulas for this measure are derived and presented. The results are extended to settings that involve study covariates using threshold regression methods. Methods adapted for clinical trials are presented. An extensive case illustration for a clinical trial setting is then presented to demonstrate the methods, the interpretation of results, and the harvesting of useful insights. The closing discussion covers a number of important issues and concepts. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Lifetime Data Analysis is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)